
Software Engineering

and Architecture

Pattern Catalog: Decorator

New Requirement

• Alphatown wants to log all coin entries:

– [time] [value]

• Example:

– 14:05:12 5 cent

– 14:05:14 25 cent

– 14:55:10 25 cent

• ☺

Henrik Bærbak Christensen 2CS@AU

The 3-1-2 machinery

• Let us look at the machinery:

•  Identify the responsibility whose concrete behaviour

may vary

•  Express responsibility as an interface

•  Composition: “Let someone else do the job”

• How does this apply?

• What is 3-1-2 here?

Henrik Bærbak Christensen 3CS@AU

Analysis

•  Identify the responsibility whose concrete behaviour

may vary

– It is the “Accept payment” responsibility

•  Express responsibility as an interface

– A) PaymentAcceptPayment role? Cohesion???

– B) PayStation role? Already in place!

•  Let someone else do the job

– Maybe let someone handle the coins before the parking machine

receives them?

Henrik Bærbak Christensen 4CS@AU

Metaphor: Principle 2

• Introduce an intermediate person/object

Henrik Bærbak Christensen 5CS@AU

Dynamics

Henrik Bærbak Christensen 6CS@AU

[Demo]

• Refactoring process – solution first programming

– Establish basis: run TestPayStation

– ps = new LogDecoratedPS(ps);

– In LogDecoratePS do

• Intro ‘private PayStation delegate;’

• Select it, and choose menu ‘Code/Delegate methods…’

– Rerun tests

– Introduce the decorating statement in the LogDec…

– ”Flip the reference” to enable/disable at runtime

Henrik Bærbak Christensen 7CS@AU

Flip Reference

• We can ‘flip’ the reference at run-time

– Will we call methods on one or the other

CS@AU Henrik Bærbak Christensen 8

payStation objectpayStation
(reference)

Logging ON

Flip Reference

• We can ‘flip’ the reference at run-time

– Will we call methods on one or the other

CS@AU Henrik Bærbak Christensen 9

payStation objectpayStation
(reference)

Logging OFF

As In…

• ‘Flipping’ code

CS@AU Henrik Bærbak Christensen 10

Decorator Pattern

Structure

Henrik Bærbak Christensen 12CS@AU

Chaining decorators

• Decorators can form chains.

• New requirement:

– no payment possible in 19.00 – 07.00 interval

Henrik Bærbak Christensen 13

:PayStationCoinLoggingDecorator

:PayStationImpl

:PayStationFreeParkingInterval

CS@AU

Automagical pattern?

• The decorator is yet another application of 3-1-2 and the

principles of flexible design!

Henrik Bærbak Christensen 14CS@AU

Consequences

• Benefits

– Adding and removing behavior at run-time

– Incrementally add responsibilities

– Complex behavior by chaining decorators

• Liabilities

– Analyzability suffers as you end up with lots of little objects

• Behavior is constructed at run-time instead of being written in the

static code

– Delegation code tedious to write (without IDE ☺)

• Make a ‘null decorator’ as base class

Henrik Bærbak Christensen 15CS@AU

