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/v New Requirement
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« Alphatown wants to log all coin entries:
— [time] [value]

 Example:
— 14:05:12 5 cent
— 14:05:14 25 cent
— 14:55:10 25 cent



/v The 3-1-2 machinery
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* Let us look at the machinery:

® ldentify the responsibility whose concrete behaviour
may vary

@ Express responsibility as an interface
@ Composition: “Let someone else do the job”

How does this apply?

What is 3-1-2 here?



/v Analysis
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« @ ldentify the responsibility whose concrete behaviour
may vary
— It is the “Accept payment” responsibility

- @ Express responsibility as an interface
— A) PaymentAcceptPayment role? Cohesion???
— B) PayStation role? Already in place!

* @ Let someone else do the job

— Maybe let someone handle the coins before the parking machine
receives them?



/v Metaphor: Principle 2
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« [ntroduce an intermediate person/object

©-
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Dynamics
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/v [Demo]
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« Refactoring process — solution first programming
— Establish basis: run TestPayStation
— ps = new LogDecoratedPS( ps );

— In LogDecoratePS do
* Intro ‘private PayStation delegate;’
« Select it, and choose menu ‘Code/Delegate methods...’

— Rerun tests
— Introduce the decorating statement in the LogDec...

— "Flip the reference” to enable/disable at runtime



/v Flip Reference
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 We can flip’ the reference at run-time
— Will we call methods on one or the other

(pa}/Station) payStation object
reference

Logging ON
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/v Flip Reference
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 We can flip’ the reference at run-time
— Will we call methods on one or the other

(pa}IStation) / paVStation ObjeCt
rerterence

Logging OFF
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eV As In...

AARHUS UNIVERSITET
* ‘Flipping’ code

@Test A henrikbaerbak.csdevf25.d42913 *

public void manualDecoratorTest() throws IllegalCoinException {
// Given the ConcreteComponent
PayStation realPayStation = new StandardPayStation(new LinearRateStrategy());
// When I decorate

+
L
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PayStation payStation = new LogDecoratedPayStation(realPayStation);

// Then I manuvally verify behavior

payStation.addPayment( coinValue: 5);

payStation.addPayment( coinValue: 10);

// Flip pointer back
payStation = realPayStation;
payStation.addPayment( coinValue: 25);
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Decorator Pattern
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PayStationHardware

«interface»

PayStation

LoggingPayStation
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/v Chaining decorators
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 Decorators can form chains.

 New requirement:
— no payment possible in 19.00 — 07.00 interval

: PayStationCoinLoggingbecorator

:PayStationFreeParkingInterval

:PayStationImpl




/v Automagical pattern?
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« The decorator is yet another application of 3-1-2 and the
principles of flexible design!

1 «interface»
Component

operation()
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component.operation(l: Decorator ConcreteComponent
addedBehaviour(); , o
P operation() operation()




/v Consequences
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« Benefits
— Adding and removing behavior at run-time
— Incrementally add responsibilities
— Complex behavior by chaining decorators
 Liabilities
— Analyzability suffers as you end up with lots of little objects

* Behavior is constructed at run-time instead of being written in the
static code

— Delegation code tedious to write (without IDE ©)
 Make a ‘null decorator’ as base class
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