/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Pattern Catalog: Decorator

/v New Requirement

AARHUS UNIVERSITET

« Alphatown wants to log all coin entries:
— [time] [value]

 Example:
— 14:05:12 5 cent
— 14:05:14 25 cent
— 14:55:10 25 cent

/v The 3-1-2 machinery

AARHUS UNIVERSITET
* Let us look at the machinery:

® ldentify the responsibility whose concrete behaviour
may vary

@ Express responsibility as an interface
@ Composition: “Let someone else do the job”

How does this apply?

What is 3-1-2 here?

/v Analysis

AARHUS UNIVERSITET
« @ ldentify the responsibility whose concrete behaviour
may vary
— It is the “Accept payment” responsibility

- @ Express responsibility as an interface
— A) PaymentAcceptPayment role? Cohesion???
— B) PayStation role? Already in place!

* @ Let someone else do the job

— Maybe let someone handle the coins before the parking machine
receives them?

/v Metaphor: Principle 2

AARHUS UNIVERSITET
« [ntroduce an intermediate person/object

©-

CS@AU Henrik Baerbak Christensen 5

\ 4
AARHUS UNIVERSITET

Dynamics

sd insert coin (logging) ‘

ps: PayStationHardware

log:LoggingPayStation

payStation:PayStationimpl

logFile:File

insert coin
[addPayment

—1 _ updateDisplay
%‘

readDisplay

|
printin

CS@AU

Henrik Baerbak Christensen

/v [Demo]

AARHUS UNIVERSITET

« Refactoring process — solution first programming
— Establish basis: run TestPayStation
— ps = new LogDecoratedPS(ps);

— In LogDecoratePS do
* Intro ‘private PayStation delegate;’
« Select it, and choose menu ‘Code/Delegate methods...’

— Rerun tests
— Introduce the decorating statement in the LogDec...

— "Flip the reference” to enable/disable at runtime

/v Flip Reference

AARHUS UNIVERSITET

 We can flip’ the reference at run-time
— Will we call methods on one or the other

(pa}/Station) payStation object
reference

Logging ON

CS@AU Henrik Beerbak Christensen 8

/v Flip Reference

AARHUS UNIVERSITET

 We can flip’ the reference at run-time
— Will we call methods on one or the other

(pa}IStation) / paVStation ObjeCt
rerterence

Logging OFF

CS@AU Henrik Baerbak Christensen 9

eV As In...

AARHUS UNIVERSITET
* ‘Flipping’ code

@Test A henrikbaerbak.csdevf25.d42913 *

public void manualDecoratorTest() throws IllegalCoinException {
// Given the ConcreteComponent
PayStation realPayStation = new StandardPayStation(new LinearRateStrategy());
// When I decorate

+
L

'II
=&

PayStation payStation = new LogDecoratedPayStation(realPayStation);

// Then I manuvally verify behavior

payStation.addPayment(coinValue: 5);

payStation.addPayment(coinValue: 10);

// Flip pointer back
payStation = realPayStation;
payStation.addPayment(coinValue: 25);

CS@AU Henrik Baerbak Christensen 10

/v

AARHUS UNIVERSITET

Decorator Pattern

/v

AARHUS UNIVERSITET

CS@AU

PayStationHardware

«interface»

PayStation

LoggingPayStation

Henrik Baerbak Christensen

Structure

PayStationlmpl

12

/v Chaining decorators

AARHUS UNIVERSITET
 Decorators can form chains.

 New requirement:
— no payment possible in 19.00 — 07.00 interval

: PayStationCoinLoggingbecorator

:PayStationFreeParkingInterval

:PayStationImpl

/v Automagical pattern?

AARHUS UNIVERSITET

« The decorator is yet another application of 3-1-2 and the
principles of flexible design!

1 «interface»
Component

operation()

4 %
/ ~
ry M
Q7 h
s -,
£ LY
component.operation(l: Decorator ConcreteComponent
addedBehaviour(); , o
P operation() operation()

/v Consequences

AARHUS UNIVERSITET

« Benefits
— Adding and removing behavior at run-time
— Incrementally add responsibilities
— Complex behavior by chaining decorators
 Liabilities
— Analyzability suffers as you end up with lots of little objects

* Behavior is constructed at run-time instead of being written in the
static code

— Delegation code tedious to write (without IDE ©)
 Make a ‘null decorator’ as base class

CS@AU Henrik Baerbak Christensen 15

